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OPTIMAL PLANNING OF MEASUREMENTS IN NUMERICAL EXPERIMENT 

DETERMINATION OF THE CHARACTERISTICS OF A HEAT FLUX 

E. A. Artyukhin and S. A. Budnik UDC 536.24 

The authors present an algorithm and analyze results of optimization of a tem- 
perature measurement scheme for solving inverse heat-conduction boundary prob- 
lems. 

In experimental investigations and the development of thermal regimes for various ther- 
mally loaded engineering items, there has recently been wide use of methods of diagnosing 
heat fluxes based on solving inverse heat-conduction boundary problems (IBP) [I]. The use 
of these methods requires careful analysis of the computing properties of the IBP solution 
algorithm (e.g., rate of convergence, stability, errors in recovering the desired functions) 
and determining the conditions for conducting the temperature measurements to achieve maxi- 
mum reliability of results of the diagnosis. 

The mathematical modeling data show that the accuracy of recovering the boundary thermal 
conditions can be increased by choosing the location of the thermal sensors in the test body, 
and also by solving the IBP in a redefined formulation [2]. Here the question arises of the 
baseline choice of the number of thermal sensors and their rational location in the specimen. 
The present paper analyzes this problem from the standpoint of theory of an optimal experi- 
ment [3, 4]. 

We consider a planar unbounded plate of thickness b in which the heat-transfer process 
is described by the following equation of unsteady heat conduction with boundary conditions 
of the second kind: 

aT O (E(T ) OT ) 
C(T) a~=- Ox ~ , O<x<b, o<,<~cm, ( i )  

T(x, o)= %(x), o~<x<~b, (2) 

- -  ~ (7" (o, ~)) oT  (o, ~:) 
Ox : q~ (x), (3) 

-- ~ (T (b, , ))  OT (b, ~) = q~ ('0. 
Ox (4) 

The IBP consists of defining the heat-flux density on one of the boundaries, e.g., 
q1(T), or simultaneously on both boundaries, q~(T) and qa(T), using the mathematical model of 
Eqs. (1)-(4) and the measure~ temperature data at a certain limited number N of points of the 
plate with coordinates x=X~ i=l, N: 

TeXP(x~, ~)= f~(z), i =  1, N. (5) 

Efficient iterative computing algorithms for recovering the above characteristics have been 
proposed, for example, in [i, 2], in which the approximate solution of the inverse problem is 
determined from the uncoupling condition: 
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N "~m 

I = ~ .I [T (Xi, ~) --/r (T)l"d~ ~ 5z, 
i = l  0 

(6) 

where T(x, T) is the temperature calculated with the aid of the mathematical model of Eos. 

N ~m 

(1)-(4) for fixed heat loads; 8 2 =~ y ~2( x', T)d~ is the generalized error of the temperature 
~ = l  0 

measurements; and o*(Xi, T) is the variance of the error of measuring temperature at the point 
with coordinate x = X i. 

From the conditions of uniqueness of the solution of the IBP to recover one function it 
is sufficient to take an unsteady temperature measurement at one spatial point. To recover 
two characteristics, the minimum necessary experimental information is temperature measure- 
ment at two points [i]. A greater number of thermal sensors leads to an overdefined formula- 
tion of the IBP. 

We introduce parameterization of the unknown characteristics in the form 

m T 

q~(~)= ~] P~J~J (~), (7) 

where qr(T) is the desired characteristic: r = i, 2, number of the boundary on which the char- 
acteristic is being recovered; and ~rj(T). ]= i, mr , system of baseline functions. Then the 
inverse problem reduces to determining (evaluating) the parameter vector P~ {ph} ~,M=ml+m~, 
which includes coefficients of the parameteric representation of the recovered (one or two) 
functions. If the heat flux density is not recovered on the r-th boundary, then m r ~ 0. 

We shall now formulate the problem of optimal planning of the measurements. For this 
purpose we introduce the measurement plan or scheme 

= {N, x } ,  x = {x,}f. ( 8 )  

A rational choice of the measurement scheme is to use some scalar quality index describing 
the accuracy of recovering the unknown parameter vector P. In analysis of an optimal experi- 
ment for inverse problems of mathematical physics a quality index of this type that finds 
wide use is the D-optimum criterion [4] 

= det [F (~)], (9) 

where F(r is the normalized Fisher information matrix: 

F(e) = i { c D h j ;  k, ] = 1, M}; (10)  

N ~m 

i = l  0 

Oh(x, ~)~ OT(x, T) , k = I, M is the sensitivity function. 
Oph 

The matrix F(e) characterizes the total sensitivity of the system at the measurement 
points Xi, i = I, N, to small variations of the entire set of parameters Pk, k = I, M. We 
require to find a measurement plan e* for which the criterion (9) reaches a maximum value. 
Here the region of allowable values of the sensor location coordinates is determined by the 
geometric size of the test specimen. A similar problem also arises in optimizing measure- 
ments for the coefficients of inverse heat-conductlon problems [5, 6]. 

Thus, a rational choice of the measurement scheme leads to the need to solve the follow- 
ing extremal problem: 

�9 ~* = A r g m a x d e t F ( e ) ,  e ~ {N, X}, X = {X~}~, O<-~Xi~b, i = 1,----N. (ii) 
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Fig. i. Parameter ~ as a function of thermal sensor location for the recovery of 

heat-flux density ql(~):l--N=l, 0<XI<I; 2--N=2, X~=0, 0~<X~<I; 8--N---3, XI=X2=O , 
O~-~X3~ 1 (t]rmax= O, 1023.10 -n)  

F i g .  2. P a r a m e t e r  �9 as  a f u n c t i o n  o f  t h e r m a l  s e n s o r  l o c a t i o n  w i t h  s i m u l t a n e o u s  r e -  
c o v e r y  o f  h e a t  f l u x  d e n s i t i e s  q , ( z )  and q = @ ) .  For  N = 2: 1) 1 - - O < X ~ l ,  X z = I ;  
2 - - X ] = 0 ,  0 < X 2 ~ ] .  F o r N = 3 :  3 - - 0 ~ X l ~ l ,  X 2 = X ~ = I ; 4 - - X ~ = 0 ,  0 < X 2 < l ,  X 3 = I  (~max=0,3887.10-26) 

The solution of this problem can be constructed by carrying out an iterative procedure 
in which at each iteration one solves the problem of f.inding an optimal vector of the coordi- 
nates of a fixed number of sensors N: 

X * =  A r g m a x d e t F ( N ,  X), O ~ X ~ b ,  i= 1, N, (12) 

and s u c c e s s i v e l y  i n c r e a s e s  t h e  number o f  s e n s o r s  by one .  The i t e r a t i v e  p r o c e s s  ends  when 
one satisfies the condition 

1 ( ~ ( l +  1, X * ) - - V ( I ,  X*) ) /T( I@ 1, X * ) I ~ p  , 

where I is the iteration number; and 0 > 0 is the given quantity. Here the minimum number 
of sensors is determined from the condition that a unique solution exists for the IBP being 
analyzed. The result is that one constructs a measurement scheme which ensures the maximum 
accuracy of recovering the boundary heat fluxes. 

We now consider special features of the computing algorithm for solving the extremal 
problem of Eq: (12). To determine the elements of the information matrix (I0), we need to 
calculate the sensitivity function Ok(x, T), k= I, M For this purpose we solve M bound- 
ary problems which are obtained by differentiating the original problem of Eos. (1)-(4) with 
respect to all the parameters Pk, k = I, M. In the case considered, the boundary problems 
for the sensitivity function have the form: 

_ _ = _ _ (  ao~) az aT aok + [ a ~ T  ak C(T) O0h a k(T) - + - ~  
av ax Ox ] OT ax Ox ax z aT + 

@ ~,--~x aT )2 a~kOT 2 aTaT aTOC ] %, O < x < b ,  O<w~-~z~,. k =  1, m~, r =  1, 2, (13) 

O~(x, 0)= O, O ~ x ~ b ,  (14) 

k (T(O, ~)),O..O" (0, -c) § aT(O, "0 .... ok (T (0, T)) 
Ox Ox aT Oh (0, ~) = -- ~nq%k (~), (15) 

E(Tfh,, ,_ T)) OOh(b, ~) ~_ OT(b, ~) Os ~)) O~ (b, (16) 
Ox Ox OT 
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Fig. 3. Variation of heat flux density at the plate boundary. 

Fig. 4. Relative value of the planning criterion (i) and the relative integral er- 
ror (2) in solving the inverse boundary problem, as a function of thermal sensor 
location (~max=0,1958'10-~). 

is the Kronecker delta; and 6rj=I I for r- ], where 3rj 
tO for r=b~]. 

It should be noted that the sensitivity function, and therefore the optimal measurement 
plan g* depend on the unknown parameter vector p. The reason is that the temperature field 
T(x, ~), O<~x<~b, O<~T<~m, , which is determined by solving the boundary problem of Eqs. (I)- 
(4), depends nonlinearly on the unknown parameters. Under these conditions one can construct 
only approximate locally optimal plans using a pr~or~ information on the values of the parame- 
ters Pk, k = I, M [3, 4]. 

The boundary problems of Eqs. (13)-(16) are linear. To solve them one must know the 
temperature field T(x, T), and therefore these problems are solved simultaneously with the 
original problem of Eqs. (1)-(4) with given estimates of the unknown parameters, These 
boundary problems are solved numerically using a monotonic finite-difference approximation 
scheme [7]. Here for all the problems we used the same space-time difference mesh, chosen to 
secure the required accuracy of numerical solution of the corresponding IBP. 

To seek the optimal thermal sensor coordinate vector X for a fixed number of sensors N 
from condition (12) we use a scanning method [8] in the given spatial mesh. The search pro- 
cedure consists of successive calculation and comparison of the values of the criterion of 
Eq. (9) at the mesh nodes. This results in determining the global extremum of the criterion 
and the optimal vector X is calculated to an accuracy of half a mesh step [5, 6]. 

In carrying out a real experiment the actual coordinates of the spatial location of sen- 
sors can differ from the optimal values, e.g., because of the mounting inaccuracy. There- 
fore, along with the choice of optimal measurement plans, one should analyze the sensitivity 
of the criterion (9) to possible variations of the coordinates Xi, i = I, N. This analysis 
is based on investigating the dependence of the optimal criterion on the location of the i- 
th sensor alone IY(XO, i=l, N , for fixed coordinates of the remaining sensors. Analysis of 
the sensitivity should be considered as an inseparable part of the optimal planning problem. 

Using the algorithm described we developed a computer program with which we numerically 
solved a number of temperature measurement optimization problems. We examined problems of 
choosing mounting coordinates form varying number of thermal sensors and analyzed the sensi- 
tivity in recovering heat flux density at the left boundary of the plate QI(T), and also with 
simultaneous determination of the heat flux densities on the two plate boundaries ql (T) and 
q=(T). As basic functions we used cubic B-splines [9]. 

In the first example the original data were [i0]: b=l, Tin=l, X(T)=I, C(T)=I, T0(x)=0. 
In the calculations we assumed a ppgorg: q1(*)=l, q2(T)=0 Here it was postulated that 
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there were no measurement errors. The temperature field and the sensitivity functions were 
calculated on a uniform space-time mesh with number of nodes nxXn~=21X21. 

Figure 1 shows the dimensionless criterion ~(X)==kV/~ma x in recovering the boundary 
function q:(T) as a function of the measured temperature data at N = I, 2, and 3 points, re- 
spectively, and number of parameters m~ = 4. Figure 2 shows the dependence "~--(X) for the 
case of simultaneous determination of q~(T) and q=(T) with N = 2, 3 and M = 8 (m~ = 4 and 
m= = 4). 

We also compared the measurement planning results with mathematical modeling data in 
which the boundary problem was solved with different measurement point coordinates [2], 

Figure 3 shows the recovered dependence q~(T) in the dimensionless coordinates-q~ = qt/ 
q~max (qmax = 10.5 kW/m 2) and ~ = T/T m. The planning problem was solved with the following 
original data: b = 0.1 m, T m = 1700 sec, ~ = 1.09"I0 -6 m2/sec, To(x) = 300 K, q2(T)=0, 
n=Xn~=41X4l and M = 6. The results are shown in Fig. 4. Here the relative integral error 
in recovering the heat flux density was calculated from the formula [2] 

T~ ~m 

0 0 

where RI(T) is the exact dependence; and q1(T) is the recovered function. 

The results obtained show that it is optimal to locate the thermal sensors on the sur- 
face on which a specific heat flux acts. This sensor location leads to the case of a pseudo- 
inverse problem [I]. As the measurement points become increasingly distant from the heated 
body surface the system sensitivity decreases, leading to a degraded condition for the in- 
verse problem being analyzed, and, as a result, to degradation of the numerical properties 
(e.g., rate of convergence of the iterative process). By analyzing the sensitivity one can 
select regions for preferred thermal sensor location, and also regions where the system sen- 
sitivity tends to zero and the experimental information is not enough for the IBP to be solv- 
ed with the required accuracy. 

The use of additional measurements increases the system sensitivity and improves the com- 
putational properties of the problem. However, as one increases the number of thermal sensors 
the influence of N on the system sensitivity decreases. 

The measurement planning results agree well with the results of numerical solution of 
the IBP. 

NOTATION 

T, temperature; x, coordinate; T, time; Tm, process duration; To(x), initial temperature 
distribution;' C(t), volume specific heat; %(T), thermal conductivity; a, thermal diffusivity; 
b, plate thickness; q1(T), q2(T), heat flux densities on the left and right boundaries of the 
plate, respectively; N, number of thermal sensors; fi(T), i = I, N, experimentally measured 
temperatures; X--~x~,i=l, N} , vector of the thermal sensor mounting coordinates; ~={N. X} , 
plan of the measurements; ~,k=~L M , system of basic functions; Pk, k = I, M, coefficients 
of the approximate relation; I, functional; ~2, generalized error of the temperature measure- 
ments; ~, optimal criterion; F(g), normalized Fisher information matrix; @~(x, ~), k=l, M 
sensitivity function; pq, relative integral error of recovering the heat flux density. Sub- 
scripts: max, min, maximum and minimum values, respectively. 

1. 

2. 

3. 
4. 
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DETERMINATION OF THE THERMOPHYSICAL PROPERTIES OF TRANSLUCENT MATERIALS 

P. V. Prosuntsov and S. V. Reznik UDC 536.2.08 + (536.3:535.34) 

A method is proposed for determining the thermophysical properties of translucent 
scattering materials in the nonsteady heating regime. 

Translucent materials capable of selectively reflecting, transmitting, absorbing, and 
scattering radiation from external heat sources and background ratiation are in use in a num- 
ber of thermally loaded structures and are being considered for more such applications. The 
empirical literature data on the thermophysical properties (TPP) of translucent scatterers in 
the high-temperature region -- where radiative heat transfer is important -- is of an approxi- 
mate nature. Heat transfer occurs in translucent materials simultaneously by'conduction and 
radiation, and the temperature and radiation fields in the materials are coupled. Thus, with- 
out isolation of the individual components of heat transfer -- conductive and radiative -- ex- 
perimental data on the thermal conductivity and diffusivity of translucent materials cannot 
be widely used in heat-engineering calculations because they apply only to specific empirical 
conditions of heat transfer for the given specimen. 

The feasibility of using well-known experimental methods of the thermophysics of the op- 
tical media [i] to correctly determine TPP and to isolate the individual components of heat 
transfer in translucent scattering materials ~s problematic for several reasons. First, 
mathematical models of inverse coefficient problems of radiative--conductive heat transfer 
(IPRCT) do not consider such important features of heat transfer as multiple scattering of 
radiation in absorbing and radiating media. Second, translucent scatterers are generally 
poor heat conductors. For these materials, as for other thermal insulators, despite the vol- 
umetric character of heating it is possible to create small temperature gradients and heating 
rates in the specimen only in a long experiment employing complicated equipment. We add that 
determining the optical properties of translucent scatterers at high temperatures is a com- 
plicated problem by itself. In this connection, it is important to develop new experimental 
methods that will make it possible to efficiently determine the TPP of translucent scatter- 
ing materials in the regime of intensive nonsteady heating. 

We will examine a physical and mathematical model of heat transfer in a translucent scat- 
tering material for the conditions of stand heat-engineering tests [2]. 

We will assume that the frontal surface of the plane specimen of isotropic translucent 
scattering material is heated by a radiation flow of a known spectral composition and densi- 
ty. The coefficient of heat transfer to the gaseous medium on the front surface and the tem- 
perature dependence of the optical properties of the material (absorption coefficient ~, scat- 
tering coefficient B, and refractive index n) are assumed to be known. The rear surface of 
the specimen is thermally insulated. Experimental thermograms are taken at one or several 
points of the specimen during heating. It is necessary to determine the temperature depen- 
dence of the thermal conductivity and volumetric specific heat of the material. 

Heat transfer in a translucent scattering material is described by a system of equations 
which includes the equations of heat conduction and radiation and the corresponding boundary 
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